HPV type attribution in high grade cervical lesions in the United States

Susan Hariri, PhD NCHHSTP/CDC

Advisory Committee on Immunization Practices (ACIP)
February 27, 2014

Overview

- Natural history of HPV-associated cervical disease
- Review data on HPV type distribution in high grade cervical lesions worldwide
- Methods to estimate individual HPV type attribution in high grade cervical lesions
- HPV type attribution in high grade cervical lesions in U.S. females

Natural history of cervical infection

Wright and Schiffman. NEJM 2003

High grade cervical lesions

- Cervical intraepithelial neoplasia (CIN) grade 2 and 3 and adenocarcinoma in situ (AIS) (CIN2+)
- Associated with high-risk (oncogenic) HPV types
- About 30% progress to cervical cancer
- HPV 16 is most common type in CIN2/3 lesions;
 HPV 18 is most common type in AIS lesions
- Main endpoints in vaccine efficacy trials
- Used to monitor vaccine impact in some countries with established screening programs

HPV type detection in high grade cervical lesions by region

Guan et al. Int J Ca 2012

Objectives

- Evaluate high-risk HPV type attribution to cervical intraepithelial neoplasia (CIN) 2 and 3 and adenocarcinoma in situ (AIS) (CIN2+)
 - U.S. women aged 21-39 years
 - Diagnosed from 2008 through 2011
- Examine HPV type attribution by age and race/ethnicity

HPV-IMPACT Project

- Population-based sentinel surveillance system established in 2008
- Monitor HPV vaccine impact on high grade cervical lesions and associated HPV types
- Five sites: California, Connecticut, New York, Oregon and Tennessee
- Histopathology laboratories serving catchment areas:
 - Report histologically confirmed CIN2+ diagnoses in adult residents of catchment (18 and older)
 - Submit archived diagnostic tissue from women under age 40 years for HPV DNA typing

Laboratory methods

HPV typing results, 2008-2011

	CIN2+	
	N (%)	
Specimens typed	5189	
HPV positive	5028 (97.3)	
Single type	3975 (79.1)	
Multiple types	1053 (20.9)	
16/18	2724 (52.7)	
31/33/45/52/58	1616 (31.3)	

HPV typing results by histologic grade, 2008-2011

	CIN2+	CIN2	CIN3/AIS
	N (%)	N (%)	N (%)
Specimens typed	5189	2402	1905
HPV positive	5028 (97.3)	2310 (96.7)	1857 (97.8)
Single type	3975 (79.1)	1766 (76.5)	1538 (82.8)
Multiple types	1053 (20.9)	544 (23.5)	319 (17.2)
16/18	2724 (52.7)	959 (40.1)	1252 (65.9)
31/33/45/52/58	1616 (31.3)	828 (34.6)	524 (27.6)

Type attribution in cervical lesions with multiple HPV types

- Presence of single HPV type in CIN2+ lesions is considered to indicate causal association
- Multiple HPV types detected in ~20% of CIN2+ lesions
- Role of each HPV type in co-infected lesions less clear
- Different methods used to attribute individual HPV types or groups of types to cervical lesions
- Used to evaluate potential impact of HPV vaccines

HPV type attribution methods

Hierarchical

- Based on single type frequency in each disease grade (CIN2, CIN2/3, CIN3/AIS)
- Case attributed to most oncogenic type (16 or 18 regardless of other types)

Example: Hierarchical attribution of CIN3 specimen with HPV 16 and 31

HPV 16 = 1

HPV 31 = 0

Total contribution of specimen = 1

Proportional*

 Weight types proportional to the type frequency in single infections in each disease grade (proportion of A as single type ÷ (proportion of A as single type + proportion of B as single type + proportion of C ...))

Example: Proportional attribution of CIN3 specimen with HPV 16 and 31

HPV $16 = 61.05 \div (61.05 + 9.10) = 0.87$

HPV $31 = 9.10 \div (61.05 + 9.10) = 0.13$

Total contribution of specimen = 0.87 + 0.13 = 1

*Used proportional attribution as there was very little difference in the 2 methods

High-risk HPV type attribution in CIN2+ lesions by race/ethnicity

^{*} p<0.01 **p<0.001

Summary

- 50% CIN2+ lesions attributable to HPV16/18
 - Range 40% in CIN2 to >60% in CIN3/AIS
- Additional 25% of CIN2+ lesions attributable to HPV31/33/45/52/58 included in the candidate 9-valent vaccine
- Higher proportion of lesions due to HPV16/18 in women under 35 years
 - Stronger carcinogens
 - Faster progression to disease
- Highest proportion of CIN2+ lesions across all racial/ethnic groups attributable to HPV16/18
- Higher proportion of CIN2+ lesions attributable to HPV16/18 in non-Hispanic white women compared to other racial/ethnic groups
 - Reasons for differences are not clear but may be due to differences in underlying prevalence of HPV types or screening and treatment

Acknowledgements

- CDC
 - Lauri Markowitz
 - Michelle Johnson
 - Beth Unger
 - Martin Steinau
 - Kathleen Hutchins
 - Danielle Nicole Miller
- New York
 - Nancy Bennett
 - Mary Scahill
 - Deven Patel
 - Gary Hollick
- Connecticut
 - Linda Niccolai
 - Jim Meek
 - Pam Julian
 - Vanessa Williams

- Tennessee
 - Karen Bloch
 - Diane Levine
 - Deepthi Pemmaraju
 - Tom Salter
- California
 - Ina Park
 - Erin Whitney
 - Heidi Bauer
 - Ashley Williamson
- Oregon
 - Sean Schafer
 - Collette Young
 - Nasreen Abdullah
 - Rob Laing

Thank you

For more information please contact Centers for Disease Control and Prevention

1600 Clifton Road NE, Atlanta, GA 30333

Telephone, 1-800-CDC-INFO (232-4636)/TTY: 1-888-232-6348

E-mail: cdcinfo@cdc.gov Web: www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

